Problema sobre autocorrelación 1.

Se dispone de la serie de datos anuales desde 1980 hasta 2009 sobre tasas de pobreza (*POB*) y de desempleo (*D*). La relación entre ambas tasas queda especificada en el siguiente modelo:

$$POB_t = \beta_0 + \beta_1 D_t + u_t$$

Los datos (en porcentaje) correspondientes a los 30 años son los que se muestran a continuación:

AÑO	POB	D				
1980	13,0	7,2				
1981	14,0	7,6				
1982	15,0	9,7				
1983	15,2	9,6				
1984	14,4	7,5				
1985	14,0	7,2				
1986	13,6	7,0				
1987	13,5	6,2				
1988	13,0	5,5				
1989	12,8	5,3				
1990	13,5	5,6				
1991	14,2	6,9				
1992	14,8	7,5				
1993	15,1	6,9				
1994	14,5	6,1				
1995	13,8	5,6				
1996	13,7	5,4				
1997	13,3	4,9				
1998	12,7	4,5				
1999	11,9	4,2				
2000	11,3	4,0				
2001	11,7	4,7				
2002	12,1	5,8				
2003	12,5	6,0				
2004	12,7	5,5				
2005	12,6	5,1				
2006	12,3	4,6				
2007	12,5	4,6				
2008	13,2	5,8				
2009	14,3	9,3				

- a) Contraste la existencia de autocorrelación con un nivel de significación del 5%.
- b) En caso de que se hubiese planteado el modelo $POB_t = \beta_0 + \beta_1 D_t + \beta_2 POB_{t-1} + u_t$, ¿con qué test hubiese contrastado la presencia de autocorrelación?

Solución

a) El contraste de hipótesis en este caso es:

$$\begin{cases} H_0: \ \rho = 0 \ (\text{Ausencia de autocorrelación}) \\ H_1: \ \rho \neq 0 \ (\text{Presencia de autocorrelación}) \end{cases}$$

Estimando por MCO se tiene que:

$$P\hat{O}B_t = 9,945 + 0,554D_t$$

A	ÑO	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
	e _t	-0,9	-0,2	-0,3	-0,1	0,3	0,07	-0,2	0,12	0,01	-0,1	0,46	0,44	0,7	1,34	1,18

AÑO	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
$\mathbf{e_{t}}$	0,76	0,77	0,64	0,26	-0,4	-0,9	-0,9	-1,1	-0,8	-0,3	-0,2	-0,2	0,01	0,04	-0,8

A partir de los residuos obtenidos es posible calcular el estadístico de Durbin-Watson:

$$d = \frac{\sum_{t=2}^{30} (e_t - e_{t-1})^2}{\sum_{t=1}^{30} e_t^2} = \frac{3,979}{10,934} = 0,364$$

Para n=30 y k=1 se tiene que $d_L=1,352$ y $d_U=1,489$. Como $d=0,364 < d_L=1,352$ \Rightarrow Se rechaza la hipótesis nula, existiendo autocorrelación positiva.

b) Dado que el nuevo modelo planteado cuenta con la variable endógena retardada como explicativa, para contrastar la presencia de autocorrelación se emplearía el test h de Durbin.